Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Molecules ; 27(5)2022 Mar 03.
Article in English | MEDLINE | ID: covidwho-1732130

ABSTRACT

Marine organisms are an important source of natural products with unique and diverse chemical structures that may hold the key for the development of novel drugs. Docosahexaenoic acid (DHA) is an omega-3 fatty acid marine natural product playing a crucial regulatory role in the resolution of inflammation and acting as a precursor for the biosynthesis of the anti-inflammatory specialized pro-resolving mediators (SPMs) resolvins, protectins, and maresins. These metabolites exert many beneficial actions including neuroprotection, anti-hypertension, or anti-tumorigenesis. As dysregulation of SPMs is associated with diseases of prolonged inflammation, the disclosure of their bioactivities may be correlated with anti-inflammatory and pro-resolving capabilities, offering new targets for drug design. The availability of these SPMs from natural resources is very low, but the evaluation of their pharmacological properties requires their access in larger amounts, as achieved by synthetic routes. In this report, the first review of the total organic syntheses carried out for resolvins, protectins, and maresins is presented. Recently, it was proposed that DHA-derived pro-resolving mediators play a key role in the treatment of COVID-19. In this work we also review the current evidence on the structures, biosynthesis, and functional and new-found roles of these novel lipid mediators of disease resolution.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Docosahexaenoic Acids/metabolism , Inflammation/prevention & control , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/metabolism , COVID-19/virology , Docosahexaenoic Acids/biosynthesis , Docosahexaenoic Acids/chemical synthesis , Docosahexaenoic Acids/chemistry , Docosahexaenoic Acids/therapeutic use , Drug Design , Humans , Inflammation/pathology , SARS-CoV-2/isolation & purification , COVID-19 Drug Treatment
2.
Biochem Biophys Res Commun ; 587: 69-77, 2022 01 08.
Article in English | MEDLINE | ID: covidwho-1540389

ABSTRACT

The clathrin coat assembly protein AP180 drives endocytosis, which is crucial for numerous physiological events, such as the internalization and recycling of receptors, uptake of neurotransmitters and entry of viruses, including SARS-CoV-2, by interacting with clathrin. Moreover, dysfunction of AP180 underlies the pathogenesis of Alzheimer's disease. Therefore, it is important to understand the mechanisms of assembly and, especially, disassembly of AP180/clathrin-containing cages. Here, we identified AP180 as a novel phosphatidic acid (PA)-binding protein from the mouse brain. Intriguingly, liposome binding assays using various phospholipids and PA species revealed that AP180 most strongly bound to 1-stearoyl-2-docosahexaenoyl-PA (18:0/22:6-PA) to a comparable extent as phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), which is known to associate with AP180. An AP180 N-terminal homology domain (1-289 aa) interacted with 18:0/22:6-PA, and a lysine-rich motif (K38-K39-K40) was essential for binding. The 18:0/22:6-PA in liposomes in 100 nm diameter showed strong AP180-binding activity at neutral pH. Notably, 18:0/22:6-PA significantly attenuated the interaction of AP180 with clathrin. However, PI(4,5)P2 did not show such an effect. Taken together, these results indicate the novel mechanism by which 18:0/22:6-PA selectively regulates the disassembly of AP180/clathrin-containing cages.


Subject(s)
Clathrin/metabolism , Docosahexaenoic Acids/metabolism , Monomeric Clathrin Assembly Proteins/metabolism , Phosphatidic Acids/metabolism , Animals , Binding Sites , Brain/metabolism , COVID-19/metabolism , COVID-19/virology , Cell Line , Clathrin/chemistry , Docosahexaenoic Acids/chemistry , Endocytosis/physiology , Host Microbial Interactions/physiology , Humans , Mice , Monomeric Clathrin Assembly Proteins/chemistry , Monomeric Clathrin Assembly Proteins/genetics , Phosphatidic Acids/chemistry , Protein Binding , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , SARS-CoV-2/physiology , Virus Internalization
SELECTION OF CITATIONS
SEARCH DETAIL